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Claisen rearrangement of transient 2-allyloxy-3-hydroxy-1-methylindole generated by decarboxylation of the correspond-

ing ester afforded, at room temperature, (2)-3-allyl-3-hydroxy-1-methylindol-2(3H)-one.

The pyrrolo[3,2-b]indole framework possessing the 1,1-
dimethylallyl group is encountered in the structure of
natural products such as ¯ustramine C,1 which has been
obtained from indol-3-one via a Claisen rearrangement.
Claisen rearrangements have been reported for 3-allyloxy-
indoles2 but only at elevated temperatures and giving 2-allyl-
indol-3(2H)-one. Sakamoto et al.1 have described an easy
rearrangement of 2-allyloxyindole to 3-allylindol-2-one.
Convolutamydine A,3 a metabolite isolated from the marine
Bryozoan organism (Amathia convoluta) presents an interest-
ing 3-hydroxyindolin-2-one framework; we can envisage
the generation of this skeleton from a [3,3]sigmatropic
rearrangement of 2-allyloxyindolin-3-one.

Recently, we have reported the unexpected synthesis of
2-allyloxydihydroindole derivatives 2±4 from tri¯ate 1
and allyl alcohol in the presence of palladium acetate4

(Scheme 1). In order to obtain 2-allyloxyindolin-3-ones,
which are intermediates in the synthesis of pyrrolo[2,3-b]-
indole,1 we considered the decarboxylation of compounds
2±4 by a standard saponi®cation procedure.

Unfortunately, treatment in basic media (ethanolic
sodium hydroxide) at room temperature of compounds
2±4 a�orded after 3 h the rearranged (2)-oxindoles 5±7

(45±54% yields). The unexpected formation of these com-
pounds may be explained by an oxy±Claisen rearrangement
(Scheme 2). This anionic process may involve enolates
of a-allyloxyketones which considerably accelerate the re-
arrangement and allow it to proceed at room temperature.5,6

The enolates were generated, after decarboxylation at
room temperature, for compounds 2±4. Compound 6 was
obtained as a diastereomeric mixture (50 :50) which cannot
be separated.
In order to con®rm the structure of 5 we have

performed a Grignard reaction on N-methylisatin 8; phenyl-
magnesium bromide,7 or ethylmagnesium bromide8 were
reported to give the corresponding tertiary alcohols at the
3-position; when allylmagnesium chloride was used (for
this reaction), the 2,2-diallyl-1-methylindolin-3-one 9 was
obtained in low yield (20%). Such reactivity has been
studied by Witkop et al.9 for analogous indolin-3-one
compounds.

Thus we considered another way of synthesising 3-allyl-1-
methylindolin-2-one by allylation of the 1-methylindolin-2-
one 10 with allyl bromide and sodium hydride in toluene;
after separation of the monoallyl derivative10 11 from the
diallyl derivative, the oxidation of the C-3 carbon atom is
performed in basic media by air oxidation11 of the generated
anion and a�orded the expected compound (2) 5 in 46%
yield.
The 3-allyl-3-hydroxyindolin-2-ones may be useful

intermediates in the synthesis of natural products and also
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illustrate the easy transformation of indolin-3-one deriva-
tives into indolin-2-one derivatives.

Experimental

Typical Procedure for Claisen Rearrangement: 3-Allyl-3-hydroxy-
1-methylindolin-2-one 5.ÐCompound 2 (150 mg, 0.54 mmol) was
dissolved in ethanol (7 ml) and water (two drops) containing KOH
in pellets (60 mg, 1.07 mmol). The mixture was stirred for 3 h at
room temperature; evaporation left a residue which was dissolved
in water (10 ml) and extracted with ethyl acetate (3� 10 ml). After
drying over MgSO4, and evaporation, the residue was chromato-
graphed on a silica gel column (eluent dichloromethane) to
give 5 (50 mg; yield 45%); mp 154±156 88C. �/cmÿ1 (KBr) 3295
(OH), 1697 (CO). dH (CDCl3) 2.56±2.78 (m, 2H, CH2); 3.17 (s,
3H, NCH3); 3.28 (br s, 1H, OH); 5.06±5.13 (m, 2H, CH.CH2);
5.55±5.72 (m, 1H, CH.CH2); 6.82 (d, 1H, Harom, J 8.2); 7.10 (t, 1H,
Harom, J 8.2); 7.32 (t, 1H, Harom, J 8.2); 7.38 (d, 1H, Harom, J 8.2).
dC (CDCl3) 26.1 (CH3); 42.8 (CH2); 75.9 (C-3); 108.4 (CH); 120.3
(.CH2); 123.0 (CH); 124.1 (CH); 129.6 (CH); 129.8 (C); 130.5 (CH);
143.2 (C); 177.9 (CO). MS (IS): m/z 204 (M��1) (Found: C, 70.85;
H, 6.57; N, 6.94. C12H13NO2 requires C, 70.92; H, 6.45; N, 6.89%).
Compound 6: yield 54%: solid; 50:50 mixture of two dia-

stereomers A and B; mp 142±144 88C; �/cmÿ1 (KBr) 3330 (OH), 1695
(CO). dH (CDCl3 � D2O) 0.75 [d, 3H, CH3(A), J 6.9]; 0.98 [d, 3H,
CH3(B), J 6.9]; 2.67±2.85 [m, 1H, CH(A � B)]; 3.15 [s, 3H,
NCH3(A)]; 3.19 [s, 3H, NCH3(B)]; 5.08±5.28 [m, 2H, .CH2(A � B)];
5.60±5.74 [m, 1H, CH.(A)]; 6.00±6.12 [m, 1H, CH.(B)]; 6.78±6.82
[m, 1H, Harom(A � B)]; 7.05±7.11 [m, 1H, Harom(A � B)]; 7.29±7.37
[m, 2H, Harom(A � B)]. dC (CDCl3) 12.1 [CH3(A)]; 13.0 CH3(B)];
24.9 [CH(A)]; 25.1 [CH(B)]; 43.8 [CH3(A)]; 45.9 [CH3(B)]; 75.5
[C-3(A)]; 75.9 [C-3(B)]; 107.1 [CH.(A)]; 107.2 [CH.(B)]; 117.1
[CH2(A)]; 117.7 [CH2(B)]; 121.9 [CH(A � B)]; 123.0 [CH(A � B)];
128.5 [C(A � B)]; 128.6 [CH(A � B)]; 135.7 [C(A � B)]; 135.7
[CH(A)]; 136.0 [CH(B)]; 176.5 [CO(A � B)]. NB: Assignments for
diastereomers A or B may be interchanged. MS (IS): m/z 218
(M+�1) (Found: C, 72.05; H, 7.09; N, 6.34. C13H15NO2 requires
C, 71.87; H, 6.96; N, 6.45%).
Compound 7: yield 46%; oil. �/cmÿ1 (®lm) 3417 (OH), 1724 (CO).

dH (CDCl3) 1.07 (s, 3H, CH3); 1.15 (s, 3H, CH3); 2.80 (br s, 1H,
OH); 3.14 (s, 3H, NCH3); 5.12 (dd, 1H, .CH2, J 1, 17); 5.20 (dd,
1H, .CH2, J 1, 10); 6.15 (dd, 1H, CH., J 10, 17.0); 6.78 (d, 1H,
Harom, J 7.2); 7.04 (t, 1H, Harom, J 7.2); 7.28 (t, 1H, Harom, J 7.2);
7.38 (d, 1H, Harom, J 7.2). dC (CDCl3) 21.0 (CH3); 23.1 (CH3); 27.1

(CH3); 44.6 (C); 81.1 (C); 108.9 (CH.); 116.5 (CH2.); 123.3 (CH);
126.8 (CH); 129.5 (C); 130.6 (CH); 142.9 (CH); 145.3 (C); 178.9
(CO). MS (IS): m/z 232 (M+�1) (Found: C, 72.45; H, 7.57; N,
6.14. C14H17NO2 requires C, 72.70; H, 7.41; N, 6.06%).

2,2-Diallyl-1-methylindolin-3-one 9.Ð1-Methylisatin (300 mg,
1.86 mmol) was added portionwise to a solution of allylmagnesium
chloride (2 M in THF, 2 ml, 4 mmol) in diethyl ether (10 ml); after
re¯uxing for 3 h, water (10 ml) was added and the mixture extracted
with ethyl acetate (2� 10 ml). Drying over MgSO4 and evaporation
left a residue which has chromatographed on a silica gel column
(CH2Cl2 light petroleum 8:2) to give 9; oil; 86 mg; yield 20%.
�/cmÿ1 (®lm) 1691 (CO). �H (CDCl3) 2.43 (dd, 2H, CH2, J 7.5, 14);
2.57 (dd, 2H, CH2, J 6.5, 14); 2.98 (s, 3H, NCH3); 4.90 (br d, 2H,
CH2.); 5.05 (br d, 2H, CH2.); 5.26±5.45 (m, 2H, CH.); 6.63±6.70
(m, 2H, Harom); 7.42 (td, 1H, Harom, J 1.3, 8.0); 7.52 (d, 1H, Harom,
J 8.0). �C (CDCl3) 29.2 (NCH3); 41.5 (2�CH2); 74.5 (C-2); 109.3
(CH); 118.1 (CH); 120.4 (2 .CH2); 121.8 (C); 126.1 (CH); 127.6
(CH); 139.4 (2 .CH); 162.4 (C); 204.4 (CO). MS (IS): m/z 228
(M��1) (Found: C, 79.43; H, 7.69; N, 6.10. C15H17NO requires
C, 79.26; H, 7.54; N, 6.16%).

3-Allyl-3-hydroxy-1-methylindolin-2-one 5.Ð3-Allyl-1-methyl-
indolin-2-one10 11 (200 mg, 1.06 mmol) was dissolved in methanol±
water (5 ml/0.5 ml) in the presence of 40% sodium hydroxide
(0.5 ml); the mixture was stirred at room temperature for 18 h;
evaporation of the solvent left a residue which was treated with
ethyl acetate (10 ml) and water (10 ml). Extraction with ethyl
acetate (2� 10 ml), drying over MgSO4 and evaporation gave a resi-
due which was chromatographed on a silica gel column using ethyl
acetate±light petroleum (2:8) as eluent. All physical data for the
solid obtained are identical to those for compound 5; 100 mg; yield
46%.
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